174 research outputs found

    Extending the Internet of Things to the future Internet through IPv6 Support

    Get PDF
    Emerging Internet of Things (IoT)/Machine-to-Machine (M2M) systems require a transparent access to information and services through a seamless integration into the Future Internet. This integration exploits infrastructure and services found on the Internet by the IoT. On the one hand, the so-called Web of Things aims for direct Web connectivity by pushing its technology down to devices and smart things. On the other hand, the current and Future Internet offer stable, scalable, extensive, and tested protocols for node and service discovery, mobility, security, and auto-configuration, which are also required for the IoT. In order to integrate the IoT into the Internet, this work adapts, extends, and bridges using IPv6 the existing IoT building blocks (such as solutions from IEEE 802.15.4, BT-LE, RFID) while maintaining backwards compatibility with legacy networked embedded systems from building and industrial automation. Specifically, this work presents an extended Internet stack with a set of adaptation layers from non-IP towards the IPv6-based network layer in order to enable homogeneous access for applications and services

    Guest Editorial: Design and Analysis of Communication Interfaces for Industry 4.0

    Get PDF
    This special issue (SI) aims to present recent advances in the design and analysis of communication interfaces for Industry 4.0. The Industry 4.0 paradigm aims to integrate advanced manufacturing techniques with Industrial Internet-of-Things (IIoT) to create an agile digital manufacturing ecosystem. The main goal is to instrument production processes by embedding sensors, actuators and other control devices which autonomously communicate with each other throughout the value-chain [1]

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Performance evaluation of bluetooth low energy for high data rate body area networks

    Get PDF
    Bluetooth Low Energy (BLE) is a promising wireless network technology, in the context of body area network (BAN) applications, to provide the required quality of service (QoS) support concerning the communication between sensor nodes placed on a user’s body and a personal device, such as a smartphone. Most previous BLE performance studies in the literature have focused primarily in networks with a single slave (point-to-point link) or traffic scenarios with relatively low data rate. However, many BAN sensors generate high data rate traffic, and several sensor nodes (slaves) may be actively sending data in the same BAN. Therefore, this work focuses on the evaluation of the suitability of BLE mainly under these conditions. Results show that, for the same traffic, the BLE protocol presents lower energy consumption and supports more sensor nodes than an alternative IEEE 802.15.4-based protocol. This study also identifies and characterizes some implementation constraints on the tested platforms that impose limits on the achievable performance.This work has been supported by FCT (Fundação para a Ciência e Tecnologia) in the scope of the projects UID/EEA/04436/2013 and UID/CTM/50025/2013, and by FEDER funds through the COMPETE 2020 Programme

    A Transition Model from Web of Things to Speech of Intelligent Things in a Smart Education System

    Get PDF
    Several terms have been used to describe Internet of Things; Web of Things (WoT) is a term which can be used interchangeability and it is referred to as the capability of devices to interconnect to the World Wide Web and sharing the information and data to one another. WoT has been mentioned in the literature to improve interconnection between devices at all times. In WoT, two different modes of communication which are generally mentioned in previous studies include person-to-thing (or thing-to-person) and thing-to-thing. This paper presents an architecture for transiting from WoT to speech-enabled WoT known as Speech of Intelligent Things (SoIT). The system employs a combination of technologies such as system design, server-side scripting, speech-based system tools, and data management in developing the SoIT prototype system as a third mode of communication. This paper illustrates a scenario whereby remote monitoring and controlling of WoT devices within the university campus might be difficult to manage by only using the modes discussed in the literature. An evolution of WoT to SoIT was realized using speech technology to provide a prototype system. Technical implications involve using a telephone by connecting an object telephone number (OTN) and dial WoT objects and establish a control mechanism. The research limitation is mainly the cost of dialing an OTN number. The contribution of this paper is to favor and encourage the use of speech technology to enhance the convenience of communication between WoT devices within the school campus

    Impact of IL-28B polymorphisms on pegylated interferon plus ribavirin treatment response in children and adolescents infected with HCV genotypes 1 and 4

    Get PDF
    IL-28B polymorphisms are predictors of response to therapy in adults infected with hepatitis C. We do not know whether they are markers of response to therapy in children and adolescents. The aim of this study was to determine whether single-nucleotide polymorphisms (SNPs) in the IL-28B gene could influence the probability of response to therapy compared with other known baseline prognostic factors and correlate with clinical findings in pediatric patients infected with hepatitis C virus (HCV) genotypes 1 or 4. We determined three SNPs of IL-28B (rs12979860, rs12980275, and rs8099917) in 82 patients with chronic HCV infection treated with pegylated interferon alpha and ribavirin (peg-IFNα/RBV). Treatment response and clinical data were analyzed. Overall, sustained virological response (SVR) was achieved by 45 % of patients infected with difficult-to-treat HCV genotypes 1 and 4. Except for IL-28B polymorphisms, there was no association of SVR with any other clinical data. IL-28B rs12979860 CC [odds ratio (OR), 6.81; p = 0.001] and rs8099917 TT (OR, 3.14; p = 0.013) genotypes were associated with higher SVR rates. IL-28B rs12980275 was not significantly associated with SVR ( p = 0.058). Only the distribution between CC and CT-TT genotypes of rs12979860 significantly differentiated patients achieving early virological response (EVR) (OR, 10.0; p = 0.011). Children with the rs12979860 CC genotype had significantly higher baseline viral load compared with CT-TT patients ( p = 0.010). In children and adolescents chronically infected with HCV genotypes 1 and 4, IL-28B rs12979860 and rs8099917 polymorphisms were the only predictors of response to peg-IFN/RBV

    Association of common ATM variants with familial breast cancer in a South American population

    Get PDF
    Background: The ATM gene has been frequently involved in hereditary breast cancer as a low-penetrance susceptibility gene but evidence regarding the role of ATM as a breast cancer susceptibility gene has been contradictory. Methods: In this study, a full mutation analysis of the ATM gene was carried out in patients from 137 Chilean breast cancer families, of which 126 were BRCA1/2 negatives and 11 BRCA1/2 positives. We further perform a case-control study between the subgroup of 126 cases BRCA1/2 negatives and 200 controls for the 5557G > A missense variant and the IVS38-8T > C and the IVS24-9delT polymorphisms. Results: In the full mutation analysis we detected two missense variants and eight intronic polymorphisms. Carriers of the variant IVS24-9delT, or IVS38-8T > C, or 5557G > A showed an increase in breast cancer risk. The higher significance was observed in the carriers of IVS38-8T > C (OR = 3.09 [95% CI 1.11-8.59], p = 0.024). The IVS24-9 T/(-T), IVS38-8 T/C, 5557 G/A composite genotype confered a 3.19 fold increase in breast cancer risk (OR = 3.19 [ 95% CI 1.16-8.89], p = 0.021). The haplotype estimation suggested a strong linkage disequilibrium between the three markers (D' = 1). We detected only three haplotypes in the cases and control samples, some of these may be founder haplotypes in the Chilean population. Conclusion: The IVS24-9 T/(-T), IVS38-8 T/C, 5557 G/A composite genotype alone or in combination with certain genetic background and/or environmental factors, could modify the cancer risk by increasing genetic inestability or by altering the effect of the normal DNA damage response

    Dynamics of the Multiplicity of Cellular Infection in a Plant Virus

    Get PDF
    Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host
    corecore